年龄相关性白内障 的病因不同类型的白内障,其致病危险因素及发病机制亦不同。详细的病因学研究可以区别不同危险因素在白内障形成过程中的作用,仍然是一个复杂而困难的课题。以某种危险因素作为某种类型白内障形成原因,建立不同类型白内障动物模型,对于总结众多危险因素在白内障病因学中的作用是一种非常有价值的研究方法。虽然这种模型有一定的局限性,比如它往往忽略了白内障形成过程中时间的影响和不同的危险因素致白内障的复杂性,但在揭示白内障形成和发生发展过程中的规律性的作用却不容怀疑。 白内障的发生是多种因素综合作用的结果,比如放射和自由基损伤;营养物质、化学物质缺乏和抗生素的使用;葡萄糖、半乳糖等代谢障碍;脂质过氧化产物损伤等。此外,其他因素如衰老、遗传基因等因素也是一个重要方面。其中最具有普遍意义的环节便是氧化损伤。
年龄相关性白内障 的发病机制1.抗氧化系统 氧自由基损伤是老年性白内障首位的危险因素。许多实验都证明晶状体的氧化损伤发生在晶状体混浊之前。各种理化因素均可通过不同途径导致晶状体自由基产生,如自由基产生过多或清除障碍,均可导致自由基聚积。自由基最先损害的靶目标是晶状体上皮细胞,其次是晶状体纤维。致使蛋白质和脂质过氧化,发生交联、变性,并聚积成大分子。 晶状体上皮细胞是抗氧化损伤的活性中心,通过两个途径发挥抗氧化作用。第一个途径是以还原型谷胱甘肽(GSH)、维生素C和维生素E等抗氧化剂为代表的清除自由基机制。晶状体的氧化损伤最早表现在GSH含量大幅度下降,氧化型谷胱甘肽(GSSG)增加,GSH/GSSG比值降低。维生素C作为自由基清除剂,可以很快与O-、OH-和O2反应,生成维生素C自由基。维生素C自由基不活泼,但易于发生歧化反应,生成一分子维生素C和一分子脱氢维生素C。维生素E是一族异构体,其中α-烟酸维生素E活性最高,可直接与O-、OH-和O2作用,从而阻断脂质过氧化。抗氧化酶系统是晶状体另一个抗氧化屏障,主要是谷胱甘肽过氧化物酶(GSHpx-1)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)。老年性白内障患者晶状体和血清中SOD水平明显低于老年非白内障患者,而且两者活力下降同步。CAT、GSHpx活力也明显下降,脂质过氧化物(LPO)、丙二醛(MDA)生成增加。 利用聚合酶链反应(PCR)检测谷胱甘肽转移酶(GSTμ)基因发现,老年性白内障患者GSTμ基因缺失率达6.95%,明显高于对照组。认为老年性白内障发病与GSTμ基因缺失密切相关,该基因缺失可能是个体易患白内障的遗传因素之一。 晶状体内含有多种可被光分解的色素成分,例如N-甲酰犬尿氨酸(NFK)、3-羟基-犬尿酸(3-OH-FK)β-卟啉、维生素B2、黄素腺嘌呤单核苷酸(FMN)、黄素腺嘌呤二核苷酸(FAD)等。这些成分均具有光敏剂性质,反复吸收光量子呈激发态,能量可被转移给邻近的氧分子生成O-,而光敏剂又恢复到基态,以此往复。晶状体内自由基主要是O-、OH-、H2O2,其中以OH-损害最严重,但O-、OH-半寿期短,H2O2相对较稳定,且可以从一处转移到另一处,在超氧化物歧化酶(SOD)、过渡金属(Fe2 、Cu2 )存在下发生歧化。 晶状体内富含色氨酸(Trp)、酪氨酸(Tyr)等成分,当波长300nm的紫外线被晶状体吸收时,色氨酸被激活,生成N-甲酰犬尿氨酸及其他光化学产物,N-甲酰犬尿氨酸可经过多个途径产生活性氧自由基,同时产生的光敏剂使晶状体产生非色氨酸的蓝色荧光和色素,改变晶状体颜色,这可能是构成棕色或褐色核性白内障的基础。 晶状体纤维内晶状体蛋白含量丰富,这些蛋白质由富含巯基的氨基酸组成,容易被氧化而受损。氧化受损的纤维细胞,逐渐被挤压到中心,蛋白质光化学产物逐渐难积。光化学产物的堆积,进一步加重了对近于UV谱段光的吸收,导致光化学反应产生更多的氧自由基,蛋白质损害最终导致色素沉积和透光性丧失。处于核心部的晶状体纤维,是晶状体内最老化的纤维,蛋白质合成能力几乎丧失。经过消旋作用、糖基化、羧基末端降解、脱氨和非共价键聚集等转录后修饰,蛋白质构象发生显著改变。此外,处于核心部位的年老纤维内晶状体蛋白基因表达,和外层年轻部位纤维的表达量不同,晶状体蛋白组成也会发生显著改变。加之与衰老有关的保护晶状体中活性代谢成分活力下降,因此,核心部位年老的晶状体纤维最易受到氧化损伤,发生混浊。 2.白内障中蛋白质等成分改变 晶状体透光性和屈光度,与水溶性晶状体结构蛋白含量有关,大多数细胞骨架蛋白主要参与纤维细胞的伸长及成熟过程,而与晶状体透明性无关。随着年龄增长和温度降低,α-晶状体蛋白易于发生凝集,这种蛋白结构上的改变可以导致光的散射,从而影响晶状体的透明性。 随年龄增长,晶状体中水溶性蛋白(WSP)含量降低,不溶性蛋白(WIP)含量升高,膜主要内在多肽(main intrinsic polypeptide,MIP)减少。在WSP中α-晶状体蛋白含量相对升高,β-、γ-晶状体蛋白含量下降。进一步分析发现β1、β2、β3晶状体蛋白中,β1-晶状体蛋白含量降低表现最为明显。由于晶状体蛋白含较多半胱氨酸(Cys),受到H2O2损伤后易于形成高分子量(HM)蛋白,高分子量蛋白又转变成不溶性尿素溶蛋白(USP)。对儿童和成人晶状体中WSP电泳图谱分析发现,在纤维细胞老化过程中部分细胞骨架蛋白,如肌动蛋白、波形蛋白(vimentin)等发生降解,这些变化与纤维细胞内蛋白水解酶被过度激活有关。 晶状体中有丰富的游离氨基酸,其中包括天门冬氨基酸、苏氨酸、丝氨酸、谷氨酸、丙氨酸、胱氨酸、缬氨酸、蛋氨酸、异亮氨酸、亮氨酸和组氨酸等。它们的浓度均比房水中的浓度要高,其中谷氨酸及谷胱甘肽含量更高。谷胱甘肽是含有甘氨酸、胱氨酸和谷氨酸的三肽,在晶状体内合成活跃,以保持晶状体囊膜的稳定性。当老年性白内障发生时,晶状体中游离氨基酸含量随白内障发展而逐渐降低,尤以谷氨酸降低为显著,进一步影响谷胱甘肽的合成。当蛋白配基氨基酸蓄积到一定程度,使细胞膜孔开大或细胞膜破裂,致氨基酸及可溶性成分通过晶状体囊膜漏出。蛋白丢失和水分的蓄积,使晶状体纤维发生水肿、变性,晶状体透明度下降,最终导致白内障形成。 白内障形成过程的早期,晶状体纤维将经历水肿等一系列形态学变化,但并非代表晶状体蛋白变性,这种病理过程是可逆的。此时如应用抗氧化药物,有可以逆转晶状体水肿状况,从而发挥治疗白内障作用。如果病情得不到控制,一旦晶状体蛋白发生交联、变性,则病变将变为不可逆,此时再应用抗氧化药物则难以达到治疗效果。 老年性白内障中脂质的改变也可能与氧化损伤有关。氧自由基导致脂质过氧化物如共轭双烯、三烯、MDA生成。MDA可通过与氨基化合物交联作用生成脂溶性、水溶性2类荧光物质,测定血清和晶状体中水溶性荧光物质(WSFS)可以代表脂质过氧化水平。老年性白内障患者晶状体中WSFS含量随年龄增长而增加。同时脂质膜上Na-K泵功能受损,晶状体泵平衡破坏,水、钠潴留,上皮细胞肿胀,最终导致白内障的发生。 实验结果还证实老年性白内障中钙-钙调蛋白(Ca-CaM)异常。正常情况下,晶状体内钙含量比前房液低100~10000倍。晶状体上皮细胞内Ca2ATP酶和Na-K-ATP酶同样是含巯基的酶,对氧化损伤非常敏感,白内障晶状体中Ca2 、CaM活性亢进。环磷酸腺苷(cAMP)性磷脂酶(PDE)为Ca2 、CaM依赖性,环磷酸鸟苷(cGMP)性PDE为Ca2 依赖性,Ca2 -CaM对cAMP、cGMP进行双向调节,两系统相互影响,相互协调。在老年性白内障中cAMP含量普遍下降,cGMP普遍升高,cAMP/cGMP比值下降。已知羟自由基具有激活鸟苷酸环化酶的作用,cGMP含量上升与氧自由基过剩有关。cAMP含量下降则与氧自由基攻击膜上的腺苷酸环化酶(AC)有关,AC酶活性下降导致cAMP合成减少,Ca2 -ATP酶上有CaM和cAMP调节区两部分,cAMP下降Ca2 -ATP酶调节失控,Ca2 升高,高钙激活晶状体细胞Calpain Ⅰ、Ⅱ引起晶状体蛋白异常水解。Ca2 可以使α-晶状体蛋白两条完整的多肽链或它的亚单位之间发生交联;β-晶状体蛋白也可由于谷氨酰胺酶被Ca2 激活,通过二硫键交联。总之Ca 流行病学表现1987年在全国范围内对双眼盲与低视力进行了流行病学分层随机抽样调查。采用WHO盲及低视力标准,调查1579316人中盲6826人,患病率0.43%;低视力患者9097人,患病率0.58%。其中盲人中41.06%,低视力患者中49.38%为白内障所致,即双眼矫正视力<0.3的白内障患者共7336人,白内障患病率为0.46%。调查结果显示白内障已成为我国首位的致盲原因。随着我国人口的增加和老龄化趋势,与年龄相关的白内障发病率也将明显增加。如果我们不采取积极有效的措施,20年后我国的盲人数量将增加1倍。 在世界卫生组织和美国国家眼科研究所的支持下,自1996年开始对我国两个地区进行了防盲治盲项目评价研究。研究结果显示,在50岁及50岁以上的人群中,白内障盲人的社会负担率(每100个50岁及50岁以上因白内障失明需进行手术治疗的人数)两地区分别为1.63%和3.80%,平均约为2.70%;而白内障手术覆盖率仅为50%。这一结果表明在50岁及以上的人群中,仍有一半即1.35%的人为白内障盲人。目前我国50岁及以上人群约占总人口的18.00%,以此计算,全国范围内仍将有290万白内障盲人急需手术治疗。据估计,2020年我国人口将达到15亿,50岁以及上人群占总人口比例也将上升到25.00%,按这一发展趋势计算,至2020年我国白内障盲人人数就将达到506.25万人,较现在积存的白内障盲人数增加近1倍。